
Diffusion on a DLA cluster in two and three dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 4341

(http://iopscience.iop.org/0305-4470/27/13/010)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 03:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A. Math. Gen. 27 (1994) 43414350. Printed in the UK 

Diffusion on a DLA cluster in two and three dimensions 

Donald J Jacobsit, Sonali Mukherjeet and Hisao Nakanishit 
i Department of Physics, Purdue University. West Lafayene 47907, USA 
I. Institute for Theoretical Physics, State University. Princetonplein 5,  PO Box 80W6. 3508 
TA Utrecht. The Netherlands 

Received 20 April 1994 

Abstract. We present a much improved calculation of the dynamic critical exponents of diffusion 
d,. ds, and the combination dt/d,  for the DLA (diffusion-limited aggregate) on square and simple 
cubic lattices using two independent approaches, one based on the exact enumeration for Ule 
displacement and velocity autocorrelation and the other on the eigenspectrum of random walks 
on the DLA. The two methods give consistent results, which, however, clearly rule out the scaling 
relation ds = %Idw first proposed by Alexander and Orbach, similarly to the case of the Eden 
tree reported previously. 

1. Introduction 

Some time ago Dhar and Ramaswamy [I]  considered diffusion on a simple tree-like structure 
which they called the Eden tree, and concluded that a typical random walk samples only 
order-1 segments (or a brunch) of the backbone so that the commonly accepted scaling 
relation due to Alexander and Orbach [2], 

4 = %I& (1) 

does not hold (for the Eden tree, df = d since they are compact). Their work was later 
confirmed by a different method and further extended to three dimensions by Nakanishi and 
Herrmann [3]. 

Diffusion on tree-like (or loopless) structures can present qualitatively different 
behaviour compared to that on a sbmture with many loops (especially large scale loops) 
because of the possibility of trapping in the loopless case. The scaling derivation of ( I )  
requires that the fractal dimension of the region visited by the random walk be the same as 
that of the entire substrate, which may be violated if such trapping'occurs. 

Tree-like structures arise in many situations in statistical physics. A typical example 
is the DLA (diffusion-limited aggregate) [4] which is a very common model of various 
irreversible growth processes. The DLA is tree-like on large scales although not strictly 
loopless on small scales. Thus a DLA cluster provides an important structure for testing the 
extent to which the breakdown of (1) may be universal to tree-like structures. Considering 
random walks confined to move on a DLA cluster of fixed size, S, we have conducted 
a detailed study of the dynamical exponents of diffusion on the DLA. The exponents we 
calculate include the walk dimension, d,, and the spectral dimension, ds. which for an 
infinite cluster are defined by the asymptotic relations 

(R(t)Z)  - tZ'd* (2)  
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where (R(t)') is the mean-square displacement of a t-step random walk, and 
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P(t )  - t-d/2 (3) 

where P(f) is the mean probability that a random walk returns to its starting point at the 
fth step. 

We emphasize that the dynamics of a random walk is considered only after a DLA cluster 
has been grown. The DLA is grown from a seed site by starting a single diffusing particle 
(modelled by a random walk) at a distance far from the centre of mass of the aggregate 
and waiting until the particle reaches one nearest neighbour distance from any site within 
the aggregate. At this time the particle sticks with probability one and then a new particle 
is released until the cluster reaches the desired size S. The random walk of the particle is 
performed off lattice until it becomes sufficiently close to a site of the aggregate where upon 
the particle is restricted to move on the underlying lattice. Our algorithm closely follows 
the techniques described by Vicsek [5]. The fractal dimension of our aggregates in two and 
three dimensions was found to be df = 1.70 i 0.02 and 2.48 + 0.02, respectively. 

Previously, Meakin and Stanley [6] have calculated the exponents d,,, and d, from Monte 
Carlo simulations of  random walks on DLA clusters. Combining with their own estimates 
for the exponent dr, their results indicated that 2df/dw = 1.35 f 0.1 and 1.44 i 0.2 in two 
and three dimensions, respectively, whereas their direct estimates of ds were 1.20 i 0.1 in 
d = 2 and 1.30 f 0.1 in d = 3. If currently accepted estimates for the fractal dimension 
[5] were used, their results would indicate 2df/dw = 1.3 1 i 0.1 in d = 2 and 1.50 f 0.1 
in d = 3. Thus, there was a strong suggestion of the breakdown of  (1) already, which 
was, however, obscured by large error bars. Actually, as is commonly done, Meakin and 
Stanley [SI used (1) as an alternative definition of ds, and their work concentrated on the 
dimensional dependence of ds. 

Webman and Grest [7], on the other hand, calculated ds by diagonalizing a Hamiltonian 
for a corresponding elasticity problem [2], and obtained the estimates ds = 1.10 i 0 . 0 5  in 
two dimensions. They also gave an argument for an upper bound for ds of 2df/(df + 1) = 
1.309 . . . for two dimensions. Although they noted the discrepancy between their estimate 
of ds and the estimate of 2dr/dw of [6], no inferences were made from this observation. 

In this paper, we use two independent approaches to explicitly evaluate the dynamical 
exponents dw, ds, and the ratio df/dw. The first approach uses an exact enumeration 
method to calculate the mean-square displacement (R(t)') and the velocity autocorrelation 
(U@) . ~ (0 ) )  of the random walk on the DLA, while the second calculates the eigenspectrum 
of the transition probability matrix associated with the random walk on the DLA. In both 
methods many independent realizations of the DLA clusters are considered which were 
generated using the same growth algorithm. Each of these approaches and the results are 
described in the following sections. We summarize the results in the final section. 

2. Exact enumeration approach and results 

As described elsewhere in more detail [8,9], the discrete time-velocity autocorrelation 
function for a random walker confined to a cluster of S sites can be easily calculated by exact 
enumeration. For a given cluster, all possible Brownian paths are summed over, starting 
from all sites, s, (where 1 < s 4 S) weighted by the stationary probability distribution, 
p(s) .  The exact enumeration is performed by successive multiplications of the transition 
probability matrix W. The matrix, W, is a stochastic matrix with elements W,,s, that give 
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the hopping probability of the random walk from site SI to site s2. In particular, we calculate 
the velocity autocorrelation function by 

where ~ ( s )  is the position vector of site s. The mean-square displacement of the random 
walker is obtained by two summations of the velocity autocorrelation function [SI over the 
discrete time f .  We have used the myopic-ant rule where the walker always hops to one of 
its nearest neighbours with equal probability at each time-step. 

We now extend the meaning of the average of a quantity, A, denoted by (A) to include a 
second average over an ensemble of clusters of size S. The number of realizations averaged 
over and the corresponding maximum time-steps for each selected size are summarized in 
table 1. 

Table 1. Summary of exad enumeration parameters for each cluster size S. N denotes the 
number of realizations avenged over and tmu denotes the maximum lime-step calculated. 

S N (d  = 2) t,, (d = 2) N (d = 3) lmax (d = 3) 

625 400 10000 600 10000 
1250 200 700W 300 ?OOOO 
2500 100 100000 200 50000 
5 0 0  60 IOOMX) 120 10000 
10000 30 1ooooo 70 IOOOW 
20000 108 100000 30 100000 
40000 10 100 000 16 lOOOW 
80000 30 loo00 36 10000 

We make a finite-size scaling assumption that the mean-square displacement for 
t ,  s + 00 has the functional form 

( R ( t .  S)’) = R,(S)’F[r/rI (5 )  

where Rm(S)’ is the saturation value for clusters of size S, r is the characteristic time that 
a typical random walk will explore the entire cluster, and the scaling function F ( x )  must 
have the limits 

lim F ( x )  + 1 
r-rm 

so that the asymptotic dependence of an infinite cluster is recovered for x = t / r  g 1. Since 
Rm(S) for a given cluster is just the radius of gyration, using the scaling form of (2) up to 
t % r ,  we can write the characteristic time as 

r ( s ;  dw) = R,(s)“ (7) 

where we show an explicit dependence on the walk exponent to remind the reader that we 
do not know d, in advance. 

In figure I ,  we plot ( R ( t ,  S)’)/&,(s)* against x = t/r(s) on logarithmic scdes for 
both two and three dimensions. Note that only d,,, has been adjusted to make the data for 
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Flyre 1. Tbe meanquare displacement Domalized by ifs saturation value for various sized 
dusters is plotted against the scaled time x = t / r ( R  d,) on logarithmic scales. To keep the 
d = 2 and d = 3 cwes separated. different abscissa scales arc used IO the lefr- and righl-hand 
sides, respectively. The full lines correspond to the asymptotic scaling behaviour described by 
(2) with the numcniwl vahe for d, chosen to be 2.64 for 2D and 3.19 for 3D. Only some of the 
data points are shown for larger f to avoid overcrowding. 

different sizes collapse onto one curve. The estimation for d,  from best data collapsing 
is checked for self-consistency by least-square fitting of the data in the power-law regime 
(x << 1) where the slope should equal 2/dw. Since we expect (5 )  and (7) to only be valid 
for times long enough for the fractal nature of the cluster to be probed, we fit over a range 
f > t,,,jn where has been varied between 10-1000. The measured slope is sensitive to 
the precise upper cut-off in x and the lower cut-off in t .  The error bars quoted have been 
estimated by taking into account the sensitivity of the fitting range as well as the visual 
appearance of the data collapse onto a single curve. From the above procedure, we have 
determined d,  = 2.64f0.05 for two dimensions and 3.19f0.08 for three dimensions. With 
our independent estimates for the fractal dimension df, we obtain Zdf/d,. These results are 
summarized in tables 3 and 4. 

We estimate the spectral dimension d, by using the fact that the velocity autocorrelation 
function for the myopic ant on bipartite clusters exhibits a strongly oscillating behaviour 
[SI. The bipartite nature of the clusters is enforced by using a square or simple cubic lattice 
in generating the DLA. That is, ail sites within the DLA cluster are subdivided into two 
distinct sets having a particular parity. A parity of x ( s )  = + I  is assigned to any site on 
one sublattice (i.e. for s where the sum of its coordinates is even) and -1 is assigned for 
the sites on the other sublattice. The strong oscillation is a consequence of the fact that a 
myopic ant must hop between the sites of opposite parity at each time-step. 

We break the velocity autocorrelation function into a sum of two parts, each defined as 
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(8) 

and 

40@, S) = (W) . - &(t,  S) (9) 
where the S dependence on the right-hand side is implicitly understood. The contribution 
from the cen'ue line, &(t,  S), is responsible for the observed anomalous diffusion and decays 
as a power law in t with the exponent 2/dw - 2. The envelope of the oscillating part of the 
velocity autocorrelation function, &(t, S), has been found [8] to decay as a power law in t 
which can be related to the spectral dimension. 

To make the connection to the spectral dimension, we first note that the envelope of 
oscillation does not decay to zero for any finite S, but rather to a non-zero residue, ]&&"I. 
This residual value can be calculated by 

S 

I&(S)l = (21 .U) 21 = Cr(s)x(s)p(s). (10) 
S=l 

As shown previously for percolation clusters [SI, the scaling relation I&(S)I - 1/S (for 
large S) also holds for the DLA. 

Secondly, we extend the scaling of 40 to finite f by making the ansatz that the envelope 
will decay in f as the inverse of the number of distinct sites visited (denoted as ( N ( t ,  S)), 
where ( N ( c o ,  S) )  = S). That is, 

(11) 

Since the probability of returning to the starting point is also inversely proportional to 
( N ( f ,  S)), it follows that I&(t, ea)[ - t-ds/2.  Numerical support for this form of decay in 
the percolation problem was given in [lo] from the eigenspectrum analysis near the negative 
maximum eigenvalue. 

IWrJ(~, SI1 - 1 / ( N ( t >  SI). 

Finally, we make a finite-size scaling ansatz 

I&(t, 5')I-I = S G(tS-'Id8) 

Iim ~ ( x )  + constant lim ~ ( x )  + xdJz (13) 

(12) 

where the scaling function G(x)  = N ( t ,  S) /S will have the limiting behaviour 

X-m X+O 

recovering the asymptotic dependence trdSl2 when ( N ( t ,  S ) ) / S  << 1. 
In figure 2, we plot G(x)  against x = f / S 2 / d s  on logarithmic scales for both two and 

three dimensions. Only d, is adjusted to make the data for different sized clusters collapse 
onto one curve. The procedure in estimating ds is the same as discussed above for d,. 
Note that we have developed the scaling of the data using the cluster size S. Alternatively, 
we can also scale with &. The latter procedure gave essentially the same results but with 
larger statistical fluctuations. 

The scaling form of (12) appears to be obeyed rather well in figure 2 for x < 1. 
However, the data splits into multiple curves for x 2 1, where saturation sets in earlier 
with the smaller clusters. This size-dependent trend may be caused by corrections to the 
l /S  scaling law, but the larger statistical fluctuations for larger S and f prevented us from 
studying the region x 1 more carefully. Nevertheless, the excellent scaling for x < 1 
has allowed us to determine ds = 1.20f0.05 for two dimensions and 1.35 50.05 for three 
dimensions. 
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VSZdS 

F i r e  2. The inverse of the envelope of the oscillating pan of the velocity autocorrelation 
function scaled by Ihe the cIuster size is plotted against the scaled time x = f/S21d* on 
logarilhmic scales. The full lines correspond to the asymptotic sealing behaviour of - 
with the numerical value for d, chosen to be 1.20 for ZD and 1.35 for 3 ~ .  

3. Eigenspectrum approach and results 

In this section we briefly describe the spectral analysis of the transition probability matrix 
W. For simplicity we have used the blind-ant rule for the hopping probability of the random 
walk for the present approach. The estimated critical exponents are not sensitive to this 
choice of ant. The blind ant hops to an available nearest neighbour with probability l/z, 
and remains at the same site with probability 1 - m / z ,  where z is the coordination number 
of the lattice and m is the number of available nearest neighbours. 

The spectral dimension ds is estimated from the density of eigenvalues, n(h) ,  of W. In 
particular, for the eigenvalues A near unity, we have [lo, 111 

n ( ~ )  - I InAldsp- ' .  (14) 

The power-law scaling described by (14) occurs for IIn(J.)l << 1 because n(h) is the 
inverse Laplace transform of the return to the starting point probability P ( t ) ,  which has the 
asymptotic form of (3). We take n(A) to be normalized such that CA n(h) = 1, where in 
the case of the blind ant, 2. is real and -1 < A 6 1. 

A direct estimate of the ratio d,/& can be made by applying finite-size scaling to the 
second largest eigenvalue, A?- where 

I In 121 - . (15) 

Note that the largest eigenvalue is equal to unity corresponding to the stationary state. 
The scaling law of (15) follows from first noting that the decay timescale of each mode 
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is governed by t - l ln l l - ' .  Secondly, the slowest decaying mode corresponding to the 
eigenvalue Az, is expected to have non-negligible eigenvector components that extend over 
the entire cluster. Therefore the slowest decay time, t ~ ,  corresponds to the timescale that a 
random walk has probed the entire cluster, as defined in (6), implying t2 - Sdw/df. The finite- 
size scaling of A2 has been discussed previously in more detail and verified for percolation 
clusters [IZ]. 

The matrix W has been numerically diagonalized using the Amoldi-Saad algorithm 
[13]. It allows us to extract a subset of eigenvalues of W which are close to unity by 
diagonalizing a subspace of W rather than the entire matrix, which makes the algori th  
highly efficient. The merits of using this algorithm over other diagonalizing routines were 
given explicitly in 1111. We obtained the eigenvalues by this method which are accurate 
up to The precise number of eigenvalues that can be found accurately depends on 
various parameters such as the size of the subspace. The number of independent realizations 
used to obtain the average of the quantities n(i) and 12 are summarized in table 2. 

Table 2. Summary of eigenspecr" analysis panmeters for each cluster size S. N denotes tbe 
number of realizations averaged over. 

S N (d = 2) N (d = 3) 
100 4000 4000 
400 3500 3000 
1000 1000 1000 
5000 2000 1050 

x c 1 o1 

10' 

100 

1 o* 10" 10.2 
1001.....~ ' ' """' ' ' '  . . ..J 

I In@) I 
Figure 3. The normalized density of eigenvalues for various size clusters is ploued against 
1 In(A)l on logarithmic scales. Different abscissa scales axe used to separate the ZD and 3D 
dam. The full lines correspond to the asymptotic scaling behaviour described by (14) with 
the numerical value for I - ds 12 chosen to be 0.42 for 2D and 0,345 for ID. These power-law 
exponents were estimated by extrapolating to infinite cluster size, as explained in the text. 
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In figure 3 we plot n(A) against I In A [  on logarithmic scales for both two and three 
dimensions. In two dimensions, the data from the various sized clusters collapse well onto 
a single curve; thus indicating that finite-size corrections are negligible. The slopes of the 
individual data sets do not vary appreciably from the collective data over all sizes from 
which ds/2 - 1 is obtained. In three dimensions, the data collapse is not as good, which 
may be an indication of finite-size effects. A slight dependence on the cluster size of 
the individual slopes was found. By extrapolating the slopes (obtained from least-squares 
fitting) of the individual data sets for size S, against I /& we have estimated d,/2 - 1 
applicable for an infinite cluster. In this way we have determined ds = 1.16 rtO.01 in two 
dimensions and 1.31 i 0.02 in three dimensions. The error bars quoted have taken into 
account the the variation in slopes and the extrapolation procedure for d = 3. 

1 o9 

I 
1 o2 1 0’ 

S (size of cluster) 

Figure 4. The average of the second largest eigenvalue of the Vansition pmbability mauix 
are plotted on logarilhmic scales against the cluster size S. The full lines are from 1east.squares 
finingwithlheslopesofabouf -1.515f0.002inZDand -1.297-tO.OO3inin~. Thesizeofthe 
symbols is greater than the statistical fluctuations, 

In figure 4 we plot I Inhzl against S on logarithmic scales. The straight lines shown are 
the least-squares fit for which both lines have correlation coefficients greater than 0,999999. 
These slopes directly give the ratio d,/df, which allows us to determine the combination 
2df/d, appearing in (1) to be 1.32 f 0.01 in two dimensions and 1.54 & 0.01 in three 
dimensions. For the sake of comparison with the exact enumeration results, we have 
combined these results with OUT estimates for the fractal dimension, di, to obtain d,. These 
results are summarized in tables 3 and 4. 



Difision on a DL4 clusler 4349 

Table 3. Estimates for d,, 2dfldw and d. for two dimensions. The Monte Carlo simulation 
results are taken from Meakin and Stanley 161, and the other m u l l s  are from this work where 
we have taken di = 1.70 f 0.02. 

Method d.. 7dcld. .. d. 
-I --.,-_I .” . . 

MonteCarlo[6] 2.56zt0.1 1 . 3 5 i O . l  1.20f0.1 
Exact enumeration 2.64 zt 0.05 I .29 f 0.04 1.20 zt 0.05 
Eigenspectrum 2.58i0.04 1.32f0.01 1.16f0.01 

Table 4. Estimates for C. Idtld, and d, for three dimensions. The Monte Carlo simulation 
mulls are taken from Meakin and Stanley 161, and the other results are from this work. where 
we have taken di = 2.48 * 0.02. 

Method dw 2dildw 4 
Monte Carlo I61 3.33*0,25 1.44-10.2 1.30fO.l 
Exact enumeration 3.19 f 0.08 1.55 i 0.06 1.35 f 0.05 
Eieenswctrum 3.21 f 0.04 1.543: 0.01 1.31 & 0.02 

4. Conclusion and discussion 

In this work we have calculated the dynamical exponents of diffusion on the DLA in two 
and three dimensions by the methods of exact enumeration and eigenspect” analysis. Our 
results are. given in tables 3 and 4 for two and three dimensions, respectively, and are also 
compared with the earlier work of Meakin and Stanley [6]. Both approaches yield consistent 
estimates for the exponents d,, d,. and the combination dfjd,, and unambiguously rules 
out, in the case of the DLA, the scaling relation (1) proposed by Alexander and Orbach [2]. 
Thus DLA joins the list of tree-like structures on which this relation is violated. 

x DLA 5=5000 
m RW k5000 

Figure 5. A typical DLA cluster of size 5000 sites is shown 
together with the trace of a typical randomwalk trajectory of 
5000 time-steps for the blind-ant rule. The walker s tms  at the 
seed Site used in generating the DLA. 

As in the case of the Eden tree [ 1,3], the violation of (1) appears to be due to the trapping 
of the random walk in a small segment of the DLA, which can be graphically demonstrated 
by looking at the region visited by the random walk (cf figure 5) .  It is not simply a matter 
of  how many distinct sites the random walker explores in time t ,  nor whether the structure 

.. 



4350 D J Jacobs et a1 

is loopless. We note that, in general, the diffusion on random self-similar fractals will be 
anomalously slow where (2) holds with d, > 2. On the other hand, we have found that 
loopless site percolation clusters do obey (I), although the exponents of diffusion differ 
from normal site percolation clusters 1141. These loopless clusters were made by removing 
a fraction of the bonds in a prescribed way which eliminates all loops but keeps all the sites 
in the cluster intact. 

There appears to be two necessary ingredients for ds = 2df/dw to breakdown. The 
random walker needs to be trapped into local regions of a cluster, as happens for loopless 
structures, and that these local regions visited by the random walker do not share the same 
global fractal dimension of the cluster. A future task of great interest would be to develop a 
systematic theory of the trapping and the anisotropy in diffusion which must be associated 
with it. 
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